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Abstract— Daytime-Nighttime domain adaptation (DNDA)
has significantly extended intelligent visual applications of
unmanned aerial vehicles (UAVs). However, existing method
that merely relies on single-view information neglects the sig-
nificant differences in viewpoint and motion pattern disparities
across different views, resulting in limited performance and
robustness in adapting to aerial view variations. Moreover,
shadow occlusion, uneven lighting distribution, and disruptive
noise exacerbate multi-view feature differences in the nighttime,
which may leads to missed targets or tracking failures. To
address these issues, this work presents a domain adaptation
framework with aerial multi-view source domains for nighttime
aerial tracking named MVDANT. Specifically, a nighttime
tracking training strategy fusing with multi-view knowledge is
proposed. Multi-view domain adaptation is employed to narrow
the huge gap between daytime and nighttime scenarios by
capturing images from multiple views in daytime scenarios.
Additionally, an innovative self-attention Transformer is pro-
posed to enhance local detail information. In the meanwhile, we
propose a novel Transformer-based hierarchical discriminator
to obtain diverse perspectives and lighting distribution knowl-
edge. Comprehensive experiments on two challenging nighttime
UAV benchmarks demonstrate that the proposed MVDANT
achieves superior UAV tracking performance in both precision
and efficiency. Quantitative tests in real-world settings fully
prove the effectiveness of our work. The source code locates on
https://github.com/visiondrobotics/ MVDANT.

I. INTRODUCTION

Visual tracking is one of the most fundamental tasks in
intelligent unmanned aerial systems, which aims to estimate
the location of an object frame by frame given the initial
state. This task is increasingly applied in autonomous landing
[1], autonomous aerial manipulation operations [2], and self-
localization [3]. Meanwhile, the significance of UAVs in
low-light applications is increasing due to their distinct
capabilities in hazardous or challenging environments. In the
intervening years, various deep learning-based trackers [4]—
[©] have continued to set state-of-the-arts (SOTAs) through
large-scale benchmarks in bright light conditions. Although
aerial tracking has made significant advances, the tracking
performance of these trackers is severely suppressed in low-
light conditions since a huge gap exists between daytime
and nighttime scenarios, making the automation and applied
range of UAV tracking still a formidable challenge.

Typically, nighttime scenes exhibit low illumination, high-
level noise, and low contrast, making it difficult for general
trackers trained with daytime images to effectively extract
target features in low-light conditions. Unfortunately, few
nighttime tracking benchmarks with sufficiently large and
comprehensive annotations are available for direct training
of nighttime trackers. Consequently, several studies [I10]—
[12]have developed low-light enhancers for pre-processing
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Fig. 1. The proposed MVDANT effectively adapted to nighttime aerial
scenes from multiple views and yields favorable performance on NAT2021-
L-test.

data in tracking pipelines. However, these methods lead to
significant object information loss and limited adaptabil-
ity to varying illumination conditions, resulting in over-
enhancement and over-saturation for the bright regions and
seriously degrading tracking performance in real-world sce-
narios. Accordingly, domain adaptation provides a novel
solution for effectively improving the nighttime tracking
performance of trackers by adapting to low-light conditions
through implicit feature-level alignment [7], which extends
the application of trackers in intelligent unmanned aerial
systems.

Domain adaptation (DA) is the technique of fine-tuning
a model that is initially trained on a source domain, to
effectively generalize to a different target domain with dis-
tinct data distributions. Due to the increasing demand for
intelligent unmanned systems to operate in real-world scenar-
ios with varying illumination conditions, daytime-nighttime
domain adaptation (DNDA) has gained significant attention
in multiple fields. DNDA aims to adapt models trained
on the daytime domain to perform well on the nighttime
domain, thereby narrowing the gap between daytime and
nighttime. However, existing methods only utilize knowledge
from a single-view and cannot effectively handle annotated
benchmarks from multiple observation views, resulting in
biased predictions in the target domain with different obser-
vation angles. This poses significant challenges for aerial-
view transformations during low-light UAV tracking.

The variation of viewpoints in UAV tracking, mainly
attributed to target occlusion, limited flight trajectories, and
rapid object movements, has a substantial impact on tracking
performance due to the viewpoint and motion pattern dispar-
ities between multiple views. Moreover, shadow occlusion,
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uneven lighting distribution, and disruptive noise exacer-
bate feature differences between multiple views in low-light
conditions due to reduced object discriminability resulting
from low illumination and the occurrence of severe noise or
blur in the images. Although merging images from different
capturing perspectives into a combined source domain is
the most direct approach, it does not fully exploit abundant
knowledge across multiple source domains, restricting their
ability to learn more effective domain adaptation models.
Some online tracking methods [13]-[16] utilize template
updating to enhance robustness against viewpoint changes.
However, these methods are vulnerable to accumulation
errors and exhibit poor tracking performance in low-light
conditions. Hence, it is crucial to develop robust tracking
method that incorporate multi-view information under chal-
lenging low-light conditions.

In this work, a multi-view domain adaptation framework
considering observation views for nighttime aerial tracking,
namely MVDANT, is proposed to bridge the considerable
gap between daytime and nighttime scenarios. As shown
in Fig. 2, we capture images using UAVs at various flight
altitudes and angles during the daytime. Additionally, a novel
transformer feature alignment module considering multiple
views is proposed to transform low-level features into high-
level features with implicit multi-view information and se-
mantic cues to improve feature extraction. Meanwhile, a
Transformer-based hierarchical discriminator, with the ability
to obtain diverse perspectives and lighting distribution is
designed to facilitate aligning the source and target domain
features. As shown in Fig. 1, the proposed MVDANT has
achieved robust performance under multi-view aerial night-
time scenarios. The following are the main contributions of
this work:

o A universal framework MVDANT considering perspec-
tive variation is proposed for nighttime aerial tracking to
bridge the gap between the general daytime conditions
and aerial nighttime conditions from multiple views.

o A novel multi-view transformer feature alignment mod-
ule is proposed to align target domain at nighttime
with source domains at daytime from multiple views
to improve feature extraction.

e We introduce a Transformer-based hierarchical dis-
criminator, which can capture diverse perspectives and
lighting distribution knowledge to facilitate adversarial
training in the nighttime.

o The nighttime tracking performance of MVDANT in
comparison to other state-of-the-art (SOTA) trackers
has been confirmed by a thorough analysis of public
nighttime tracking benchmarks and a real-world test.

II. RELATED WORK

A. Visual Tracking

Object tracking methods majorly comprise correlation
filter-based methods and methods based on convolutional
neural networks (CNNs). DCF-based trackers [17]-[19] were

used in UAV tracking initially, because of their com-
petitive and efficient performance while maintaining ac-
ceptable speed. However, complex optimization strategies
have limited the development of DCF-based trackers de-
spite their high performance. After SINT [20] modified
the tracking task to patch matching, SiamFC [21] devel-
oped an end-to-end tracking method to discover similarities.
SiamRPN [22] and SiamRPN++ [23] incorporate region
suggestion networks (RPNs) into their Siamese-based frame-
work. SiamFC++ [24] and SiamCAR [25], as solutions
employing an anchor-free tracker, solve the aforementioned
classification issue by adjusting the centroid and regressing
on four offsets. Although Siamese networks have shown
remarkable practicality and robustness for aerial tracking
applications, few can guarantee superior performance under
low illumination.

B. Nighttime aerial tracking

In low-light scenarios, the tracking performance is signif-
icantly reduced with low visibility and weak features. Sev-
eral studies [1 1], [12] have developed tracking-related low-
illumination enhancers for data pre-processing in the tracking
pipeline. SCT [12] proposes a spatial-channel Transformer-
based enhancer for low-light UAV tracking. HighlightNet
[11] facilitates human perception and UAV tracking tasks
through global feature modeling, pixel-level range masks,
and a soft truncation mechanism. However, these enhancers
lacks complexity and adaptability under varying illumination
conditions, which may result in over-enhancement and over-
saturation for the bright regions of the low-light images and
UAV tracking failure. Therefore, other works [7] recom-
mend employing a domain-adaptive strategy to bridge the
gap between daytime and nighttime scenes, demonstrating
robustness on public nighttime benchmarks.

C. Daytime-Nighttime Domain Adaptation

Domain adaptation has been applied to a variety of
image classification scenario [26], [27] to reduce domain
differences and transfer knowledge from the source domain
to the target domain. In order to detect objects at night,
Y.Sasagawa et al. [27] combined a low-light image enhance-
ment model and an object detection model. In addition,
adaptive techniques [28], [29] are also employed in semantic
segmentation. Recently, an unsupervised domain adaptation
framework [7] for object tracking has emerged. However,
existing methods neglects the significant gap between multi-
ple observation views. Transferring knowledge from different
scenarios with only a single perspective is inadequate for
addressing complex real-world scenarios.

III. PROPOSED APPROACH

In unsupervised MVDANT, the following scenario is ex-
amined: M labeled source domains, S7, 53, ..., Spr, acquired
by UAV from various perspectives, and one unlabeled target
domain T'. In the i-th source domain, S; = {(X;, Zgl)}év:ll
suppose X%, represents the search region and Z%; represents
the template patch in the j-th videos, where NN; is the number
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Overview of MVDANT. The source domain data consists of the UAV captured in various daytime scene views as input, while the target domain

is obtained from the UAV captured in the nighttime scene. Feature extraction network, feature alignment network, and loss function phase are the modules
from left to right. The workflow of features from the target and source domains, respectively, is represented by two arrows of varying colors. Color

saturation is used to differentiate the search domain from the template.

of videos in the ¢-th source domain. For the unlabeled
target domain 7', we use the common unsupervised data
processing method to obtain potential targets and crop them.
Consequently, the nighttime target domain can be represented
by the set T = {(Xg,Zg)}éV:TP suppose X7 represents the
search region and Zg represents the template patch in the
j-th videos, where Nr is the number of target videos.

A novel end-to-end multi-source domain adaptive network
called MVDANT is proposed for nighttime aerial tracking,
and its pipeline is shown in Fig. 2.

A. Feature Alignment

Low-level features. Siamese network feature extraction
comprises two branches: the template branch and the search
branch. Search patches X and template patches Z corre-
sponding to distinct source domains and the target domain
are therefore simultaneously input into the network, and use
a weight-sharing feature extractor to obtain the low-level
feature map 5., 5 in the target domain and cpgi,gogi in
various source domains.
High-level features. The n tracking perspective branches,
P = {Ps,,i=1,2,---,n}, are comprised of low-level
feature maps of source domains from multiple views and the
target domain. The low-level features from each viewpoint
are input into the multi-view feature aligner Fp, to improve
feature extraction and generate high-level features.
Multi-view Feature Aligner. A multi-view transformer
structure generates high-level features to facilitate feature
extraction from multiple views. Multi-view feature encoder
layer and current-view feature decoder layer are the principal
components of the proposed feature alignment module.
Multi-view feature encoder layer seeks to identify the
interdependencies between the target feature and information
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window displays the feature encoder and fuses the multi-source domain
features; the right sub-window displays the decoder’s structure and outputs
the feature alignment results.

from multiple views. The multi-head attention module mAtt



is formalized as follows [30]:
mAtt(Q,K, V) = (Cat (r',...,h"V)) W, ,

W = Att (QW], KW, VW) M

1 29 3 )
where N donates the number of parallel attention heads, and
Att represents scaled dot-product attention.

To extract view-invariant features, features of the search
patch and template patch are concatenated as view-combined
features for the first multi-head attention module, and we
take the instance of the template patch in the following
introduction for clarity.

M = Conv(Cat(]'—fql,}—éQa . ‘7‘Fgﬂ,) )

2
Input’ = Norm(mAtt(M + P) + M + P) , @

where M donates the view-combined feature, Conv repre-
sents the fractionally-strided convolutions, mAtt indicates the
multi-head attention, P donates positional encodings, and
Norm refers to the normalization layer.

The template features from present view ‘Ff‘?w and input’
are input to the second multi-headed attention module.

Input = Norm(F§, + Input’) . (3)

The output combines information about target features
from the present view, with the structure of the decoder
exhibited in Fig. 3. Thus, for each perspective branch Pg,,
such a loss function phase L£p, can be constructed:

LPslz{(Fjg;lvfgsl)a 2‘:132a"'aN} ) 4
where F g; and J_-.]j;si indicate the feature after alignment of
the source domain data and the target domain data from the
perspective Ps,, respectively.

Remark 1: Through the multi-view feature alignment mod-
ule, view-invariant features are enhanced with the view and
semantic information in target features. Simultaneously, the
view control layer aggregates inter-dependencies between
various features, contributing to improving the robustness of
tracking objects from diverse views.

B. Tracker Alignment

Discriminator in multi-view. For each perspective, day-
time images are distinguished from nighttime images using
discriminators, i.e, D = {D;,i=1,2,--- ,n}, where D;
indicates the discriminator under perspective branch Pg,. A
gradient reversal layer (GRL) is placed between the feature
aligner and domain discriminator to perform adversarial
learning.

As the feature distribution varies from multiple perspec-
tives, the discriminator for each perspective can be viewed as
a subspace of the day-night feature space for discrimination.
The high-level features are represented as:

Di (72 ) =+ Di(Sy) 5
D, (fgsj) — D, (Ty)

#N02005

Frames Baseline MADNet (ours)

Fig. 4. Visual comparison of confidence maps generated by the baseline
and the proposed MVDANT. Target objects are marked by green boxes.

Adversarial loss. In adversarial learning, a least-squares loss
function is used to train the generator G to generate source
domain features in target domain images and deceive the
discriminator D at freezing to align the target domain with
each source domain:

N N
ﬁAdv = Z Z )‘fzdv (Dl (TJ) — s ) s (6)

i=1 j=1

where A} ; represents the adversarial loss and /5 denotes the
label for the source domain.

Discriminator loss. Typically, the discriminator is imple-
mented as a network, necessitating the learning of new
parameters. The loss function of D is defined as:

)

where )\é represents the discriminator loss, and ¢; denotes
the label for the target domain.

Remark 2: In actual training, the daytime label of the source
domain /¢, is assigned to 0 and the nighttime label of the
target domain /; is assigned to 1.

Tracker consistency. An implicit strategy is employed to
bridge the gap between each source and target in each
tracking perspective. However, trackers trained on a single
perspective tend to misidentify target images near the cat-
egory boundary. Hence, the tracker’s prediction results are
regularized for the same target image in various loss function
phases. The overall consistency cost is formalized as:

9 N—1 N
Leon = ———— BL — BT 8
N(Nfl);z‘;ﬂTM' ps, ~Brgl  ®

where BJTDS, denotes the bounding box prediction of the target
image under perspective branch Ps,, T represents the mean
squared error for various tracker calculation metrics.

Remark 3: Multiple tracker network architectures can be
replaced, and SiamCAR [25] is adopted as the baseline
tracker in this work, including classification, center-ness, and
regression. In addition, the feature gap between multiple
views in each daytime or nighttime scene is further narrowed.
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Overall performance of SOTA trackers and MVDANT on nighttime aerial tracking benchmarks. The results show that the proposed MVDANT

trackers realize top-ranked performance and improve baseline trackers favorably.

C. Overall Objective

The total training loss of the generator is summarized as
follows:

’CTotal = ‘CGT +A (’CAdv + ‘Ccon) 9 (9)

where L~ donates the classification and regression loss, and
A represents a weight to balance the loss from various views.
During model training, set A as 0.1 in implementation.

IV. EXPERIMENT
A. Experimental Setup

Dataset. Our framework is trained on five daytime public
authoritative benchmarks.

e GOT-10K [31] is a large, high-diversity benchmark for
general-purpose object tracking in the field including a
total of 10,000 video clips of real-world moving objects.

o NAT2021 [7] is a nighttime aerial tracking benchmark,
and provides unlabeled nighttime tracking video for
unsupervised training, which consists of 1400 videos
containing over 276K frames,

o UAV123 [32] is a drone-captured video tracking dataset
containing over 110K frames and 123 video sequences,
which has a pristine background.

o UAVDT [33] is a dataset comprised of approximately
8,000 frames with 14 attributes, based on vehicle traffic
content ingested by UAVs. We use the UAV-benchmark-
S In this work.

e UAVTrack112 [34] is a benchmark which is created
from images captured during real-world tests including
45 sequences.

In the daytime, UAV 123, UAVDT, and UAVTrack112 are
combined to simulate source domain data from a high-
angle aerial view, while the GOT-10K is to simulate source
domain data from a low-angle horizontal view. Additionally,
NAT2021 is used as the target domain.

Remark 4: Since the UAVDT contains images collected
under various weather conditions, we eliminated the train-
ing videos captured in low-light conditions to improve the
distinction between the source and target domains.

Evaluation Metrics & Compared Baselines. To evaluate
the impact of multi-source domain adaptation, the pre-trained
tracking models are trained on different source domain
benchmarks and employed as baseline models. In addition,
We rank the performance in terms of success rate, precision,
and normalized precision using a one-time evaluation (OPE).

B. Implementation Details.

Stagel. Source-model pre-training. In this stage, we sep-
arately pre-train the two source domains on the SiamCAR
network, the batch size is set as 32 and a total of 20 epochs
are performed by using stochastic gradient descent (SGD)
with an initial learning rate of 0.001. The results in two pre-
trained models are used as initialization weights for both
trackers in MVDANT.

Stage2. Multi-source domain adaptation. We implement
our MVDANT framework using PyTorch on an NVIDIA
RTX A100 4 GPUs, and the discriminator is trained through
the Adam optimizer. The base learning rate is set to 0.005
and decayed with a power of 0.8 according to the poly
learning rate policy. The whole training process lasted for
20 epochs.
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Fig. 6. Normalized precision plots and success plots of illumination and viewpoint attributes on NAT2021-test and UAVDark70.

TABLE I
THE RESULTS OF THE TOP EIGHT TRACKERS ON THE NAT2021-L-fest. OUR TRACKER OUTPERFORMS ALL OTHER TRACKERS WITH AN OBVIOUS

IMPROVEMENT. THE TOP THREE PERFORMANCES ARE RESPECTIVELY HIGHLIGHTED BY RED,GREEN, AND BLUE COLOR.

Trackers \ SiamFC++ [24]  Ocean [35]  SiamRPN++ [23]  UpdateNet [36]  D3S [37] UDAT-BAN [7] UDAT-CAR [7] MVDANT

Prec. 0.425 0.454 0.431 0.434 0.492 0.496 0.506 0.577

Norm. Prec. 0.344 0.370 0.342 0.314 0.364 0.406 0.413 0.523

Succ. 0.297 0.315 0.299 0.275 0.332 0.352 0.376 0.435
TABLE 11

ADAPTIVE STRATEGIES FOR DIVERSE DATASETS. OUR TRACKER OUTPERFORMS ALL OTHER TRACKERS WITH AN OBVIOUS IMPROVEMENT. THE TOP
THREE PERFORMANCES ARE RESPECTIVELY HIGHLIGHTED BY RED, GREEN, AND BLUE COLOR.

‘ NAT2021-test ‘ UAVDark70
standards | Prec. | Norm. Prec. | Succ. | Prec. | Norm. Prec. | Succ.
Low-view-only 0.572 0.502 0.388 0.400 0.371 0.291
source-only [25] High-view-only 0.518 0.415 0.333 0.242 0.226 0.174
Source-combined 0.561 0.463 0.358 0.347 0.318 0.233
Low-view-only 0.654 0.565 0.454 0.626 0.549 0.466
Single-source DA [7] High-view-only 0.651 0.542 0.446 0.595 0.531 0.435
Source-combined 0.669 0.590 0.471 0.655 0.570 0.480
Multi-source DA \ \ 0.677 \ 0.611 \ 0.483 \ 0.672 \ 0.576 \ 0.496

C. Overall Performance

Comparison with SOTA Trackers. As shown in Fig. 5, MV-
DANT is 2.6% better than SiamCAR (0.453) on NAT2021-
test and 1.2% better than SiamBAN (0.484) on UAVDark70
in success rate; in normalized precision, MVDANT is 1.6%
higher than SiamCAR (0.542) on NAT2021-test and 0.6%
higher than SiamMask (0.570) on UAVDark70. MVDANT
trained on the preceding benchmarks achieves nighttime
tracking performance comparable to that of other SOTA
trackers.

Long-term tracking evaluation. To validate the effective-
ness of our framework in long-term tracking performance,
we conduct the evaluations on NAT2021-L-test. MVDANT
outperformed the runner-up on the NAT2021-L-test by 7.1%
in precision, 11.0% in normalized precision, and 5.9% in

success rate. The results presented in Table 2 demonstrate
that MVDANT achieves highly competitive long-term track-
ing performance, significantly outperforming the baseline
tracker.

D. Attribute-Based Performance

Additional environmental changes caused by illumination
and views can exacerbate the difficulty of aerial tracking. To
thoroughly assess the robustness of our tracker against par-
ticular challenges, a comparison of their pertinent properties
is conducted, such as illumination variation, low resolution,
fast motion, viewpoint change, efc. The comparison between
other SOTA trackers is presented in Fig. 6. proves the ro-
bustness of our framework in several challenging conditions.
For instance, MVDANT raises the success rate of the existing
best performance by ~6.6% on NAT2021-test for illumina-



tion variation. In addition, MVDANT realizes a success rate
of 0.521 for viewpoint change on UAVDark70 and 0.476
for fast motion on the NAT2021-test, which improves the
existing best performance by ~4.3%.

E. Ablation Study

Effectiveness of MVDANT. In this work, MVDANT is com-
pared to various benchmarks on the same training condition.
Table 1 demonstrates that our model narrows the huge gap
between the general daytime conditions and aerial night-
time conditions from multiple views. Specifically, MVDANT
achieves significant improvement compared to the view-
combined domain adaptation by ~3.5% for Norm. Prec. and
~2.5% for Succ. on NAT-test, while ~1.1% for Norm. Prec.
and ~3.3% for Succ. on UAVDark70, respectively.

In addition, regardless of whether the adaptive method

is employed or not, the performance is inferior when only
the high-angle view is used as the source domain compared
to the low-angle view, indicating that due to factors such
as scale variation and low resolution, the high-angle view
images captured by UAVs provides more background infor-
mation and less about target local features.
Comparison with various modules activated. To investi-
gate the performance of several MVDANT variations, abla-
tion studies regarding various modules are presented in this
subsection. This work considers Baseline as the model
with SiamCAR with a ResNet50 backbone. ADA denotes
adversarial multi-source domain adaptation. MFA represents a
multi-view feature aligner with a novel transformer structure.
TA denotes the method of tracker alignment. Table I con-
tains the tracking results for NAT2021-L-test. The first row
represents the original baseline, which demonstrates subpar
performance. However, the addition of the entire MVDANT
improved the Norm. Prec. and Succ. by 26.67% and 32.01%,
respectively, demonstrating the effectiveness of the added
modules.

FE. Real-World Tests

MVDANT was implemented on a typical embedded sys-
tem, the NVIDIA Jetson AGX Xavier, to demonstrate its ap-
plicability in nighttime drone tracking applications in the real
world. Without TensorRT acceleration, MVDANT achieves
an impressive real-time speed of 31.25 frames per second
(FPS). In addition, Fig. 7 depicts nighttime tracking tests
and CLE curves conducted in the real world. The CLE curves

TABLE III
MVDANT ON NAT2021-L-test COMPARISON WITH VARIOUS MODULES
ACTIVATED. THE MOST ADVANTAGEOUS RESULTS ARE INDICATED IN
RED. A INDICATES THE PERCENTAGE INCREASE OVER THE BASELINE.

ADA MFA TA Norm. Prec. A p(%) Succ. A s(%)
0.375 - 0.330 -

v 0.447 +19.20  0.362 +9.70

v v 0.459 +22.40  0.381 +15.45

v v 0.487 +29.87 0410 +24.24

v v v 0.523 +39.47 0435  +31.82

CLE

h , 4
30 90 150 210 270 330 390 450 510
Frame(#)

60 120 180 240 300 360 420 480 540 600 660
Frame(#)

P A

30 9 150 210 270 330 390 450 510 570
Frame(#)

Fig. 7. Real-world tests on a typical UAV platform. Red bounding boxes
denote the estimated positions. CLE curves between predictions and ground
truth are drawn below. The green dashed line locates a threshold of 20 pixels,
tracking errors within which are normally regarded as satisfying. The base
tracker realizes favorable nighttime tracking assisted by MVDANT.

indicate that the prediction error is within 20 pixels, making
tracking reliable. The real-world tests on our practical UAV
strongly demonstrate the practicability and achieve robust
nighttime object tracking of our proposed MVDANT.

V. CONCLUSION

We propose using a multi-source domain adaptive ap-
proach MVDANT to address UAV nighttime tracking from
multiple perspectives. A multi-source domain adaptive pro-
cessing method is proposed to obtain high-level features by
fusing the feature alignment network of multi-view features,
aligning the daytime source domain from different capture
views with the target domain of the night scene, and op-
timizing the loss function to align the tracker. With the
same dataset training, the multi-source domain demonstrates
a more effective structural advantage than other methods and
has been tested on several publicly available datasets, particu-
larly for Long-term tracking, where MVDANT demonstrates
a very stable tracking performance.
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